

BACHELOR IN ECONOMICS FIRST YEAR

Course	Mathematics I	Code	802344
Module	Basic Formation	Area	Mathematics
Nature	Basic	Credits	6
Year	1	Semester	1

COORDINATION

DEPARTMENT		
Economic Analysis		
COORDINATOR AND CONTACT		
Haydée Lugo; hlugo@ucm.es		

TEACHING ACTIVITIES	% OF TOTAL CREDITS	ATTENDANCE
Lectures	30%	100%
Classes	10%	50%
Tutorials	6%	100%
Assessment activities	4%	100%
Homeworks and class assignments	20%	0%
Time to study	30%	0%

SYNOPSIS

BRIEF DESCRIPTION

Introduction to functions of several variables. Differentiation Problems. Integration of functions

Faculty of Economics and Business

of one variable.

PRE- REQUISITES

It is recommended a fluent handle of differentiation of one variable.

OBJECTIVES

Students should acquire the mathematical skills they need in order to solve economic analysis problems and to understand technical literature on economic theory.

COMPETENCES

General: CG1,CG2,CG4

Transversal: CT1,CT2,CT3

Specific: CE8,CE9

LEARNING METHODOLOGY

A mixed methodology of teaching and learning will be used in all educational activities with the aim of encouraging students to develop a collaborative and cooperative attitude in the pursuit of knowledge.

TOPICS COVERED (SYLLABUS)

Differential Calculus with two variables

Level curves and slopes

First and second order partial derivatives and elasticities.

Differentiation and linear approximation. Gradient properties

Quadratic approximation

Composition of functions. The chain rule

Homogeneous functions

Integration

Area and Definite Integrals. The fundamental theorem. Economic Applications

Indefinite Integrals

Integration by Parts. Integration by substitution

Introduction to Double Integrals

ASSESSMENT			
EXAMS	% Share of Final Grade	50%	
Examen final			
Other activities	% Share of Final Grade	30%	

Faculty of Economics and Business

Midterm exams			
Other Activities	% Share of Final Grade	20%	
Exercises and active participation			
ASSESSMENT CRITERIA			
Minimum requirement in Final Exam: 3.5 points out of 10 of which 2.25 for differential calculus and 1.25 for integral calculus. This minimum grade is requested in both calls, ordinary and extraordinary call. In any call (ordinary or extraordinary), the final exam is 50% of the final evaluation.			
Any student will be graded with "Exam: not taken" in February in the following cases:			
a) He has no grades in any midterm or final examb) He only has grade in the first two midterm exams.			
Any student not taking the "extraordinary call" exam will be graded with "Exam: not taken"			
Continuous assessment in the extraordinary examination: in case one student has failed the ordinary examination, having attended the final exam and participated in the continuous			

assessment, the mark to be considered as continuous assessment for that extraordinary examination will be the final mark obtained in the ordinary examination.

TIMETABLE

Week	Contents	Practical classes	Homework
1 ^a	LECTURE 1: Functions of two variables Functions of many variables Domain and Range Graphs. Level Curves Partial derivatives. Economic application	Solution of some exercises from the Problem Set 1	Reading Material: Textbook Chapter 11 Exercises: Problem Set 1
2 ^a	LECTURE 1: Functions of two Variables Partial Derivatives. First order. Elasticity of a one variable function. Partial Elasticities Marginality	Solution of some exercises from the Problem Set 1	Reading Material : Textbook Chapters 11 and 12. Exercises: Problem Set 1
3ª	LECTURE 1: Functions of two variables Second order partial derivatives The hessian Matrix Schwartz Theorem	Solution of some exercises from the Problem Set 1	Reading Material : Textbook Chapters 11 and 12 Exercises : Problem Set 1
4 ^a	LECTURE 2: Linear and Quadratic Approximation Differentiation. Linear Approximation The Tangent Plane Linear approximation with elasticities	Solution of some exercises from the Problem Set 2	Reading Material : Textbook Chapters 12 Exercises : Problem Set 2
5 ^a	LECTURE 2: Linear and Quadratic Approximation Properties of the gradient Implicit differentiation along a level curve. Slopes.	Solution of some exercises from the Problem Set 2	Reading Material : Textbook Chapter 12 Exercises : Problem Set 2
6 ^a	LECTURE 2: Linear and Quadratic Approximation Quadratic Approximations Taylor's Formula	Solution of some exercises from the Problem Set 2	Reading Material : Textbook Chapter 7, 12 Exercises : Problem Set 2
7 ^a	LECTURE 3: Multivariable Calculus The composite function. Dependence Schemes. Partial derivatives of the composite function. The Chain rule	Solution of some exercises from the Problem Set 3 Midterm Exam	Reading Material : Textbook Chapter 12 Exercises : Problem Set 3
8 ^a	LECTURE 3: Multivariable Calculus The composite function. Economic Applications	Solution of some exercises from the Problem Set 3	Reading Material : Textbook Chapter 12 Exercises : Problem Set 3

9 ^a	LECTURE 3: Multivariable Calculus Homogeneous Functions Euler Theorem.	Solution of some exercises from the Problem Set 3	Reading Material : Textbook Chapter 12 Exercises : Problem Set 3
10 ^a	LECTURE 4: Integration I Calculating the area under a Curve The Definite Integral of a Continuous Function The fundamental Theorem of Integral Calculus Compound function integral	Solution of some exercises from the Problem Set 4	Reading Material: Textbook Chapter 9 Exercises: Problem Set 4
11 ^a	LECTURE 4: Integration I Marginal functions Indefinite Integrals Antiderivative. Some Basic Integrals	Solution of some exercises from the Problem Set 4	Reading Material: Textbook Chapter 9 and 10 Exercises: Problem Set 4
12 ^a	LECTURE 4: Integration II Change of Variables Integration by Parts	Solution of some exercises from the Problem Set 4	Reading Material: Textbook Chapter 9 Exercises: Problem Set 4
13 ^a	LECTURE 4: Integration II Double Integrals	Solution of some exercises from the Problem Set 4	Exercises: Problem Set 4
14 ^a		Midterm Exam	Exercises: Problem Set 4

RESOURCES

BASIC BIBLIOGRAPHY

Essential Mathematics for Economic Analysis

Third Edition Prentice Hall

Sydsaeter and Hammond

COMPLEMENTARY BIBLIOGRAPHY

Introduction for Mathematical Economics Third Edition - Schaum's Outlines – Mc Graw Hill - Edward T. Dowling

Further Mathematics for Economic Analysis. Second Edition. Prentice Hall. Sydsaeter, Hammond, Seierstad and Strom

OTHER RESOURCES

Mathematical software (Maple, Matlab, Python, Derive or similar)